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The Relationship of Physical Applications of Foutiet
Transforms in Various Fields of Wave

Theoty and Circuitry*

E. FOLKE BOLINDERY

Summary—A procedure is presented for connecting some known
physical applications of Fourier transform pairs in different branches
of the theory of waves and circuitry. After an investigation of the
cases of diffraction, reflection, and coupling of waves, deflection
of particles (which includes the cathode-ray-tube case and so-called
gap effect) and the closely related scanning problem are examined.
Finally, extension to random functions is discussed briefly.

INTRODUCTION
}l ) URING the last decades, more and more engi-

neers and physicists have started to use the

Laplace and Fourier transformations in solving
their preblems, The idea is that a problem that is diffi-
cult to solve in one domain might be easily solved after
transformation to another domain, whereupon a trans-
formation is made back into the original domain. Ac-
tually, every engineer is performing the same type of
operatioas in multiplying two numbers by adding their
logarithms on his sliderule.

In this paper, only the Fourier transformation arising
from integration along the real axis in the two domains
will be considered. The connection between this trans-
formation, the Fourier transformation in the complex
plane, the two-sided and the one-sided Laplace trans-
formations has been lucidly described by van der Pol
and Bremmer.! The method of extending real integrals
into the complex plane is well known from the residue
calculus. When even the complex integral is difficult to
calculate, approximate integration has to be used.
Until about eight years ago only two methods were
known, both giving asymptotic series as results. The
methods are called the saddlepoint method and the
stationary phase method. Since that time, Cerrillo at
M.I1.T. has created a new theory of approximate inte-
gration founded on five new methods, all giving uni-
formly convergent series? as results.

* Manuscript received by the PGMTT, October 5, 1956. Reprint-
ed from Acta Polytechnica, Physics, including Nucleonics Series, vol.
3, p. 189, 1956. The work was made possible by research grants from
the Swedish Gov. Tech. Res. Council, Stockholm, Sweden, and
Telefonaktiebolaget LM Ericsson, Stockholm, Sweden.

t Formerly with the Royal Inst. of Tech., Div. of Radio Eng.,
Stockholm, Sweden; now at the Res. Lab. of Electronics, Mass.
Inst. of Tech., Cambridge, Mass.

1 B. van der Pol and H. Bremmer, “Operational Calculus Based
on the Two-Sided Laplace Integral,” Cambridge University Press,

London, Eng.; 1950.
2 M. V. Cerrillo, “On the Evaluation of Integrals of the Type
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and the Mechanism of Formation of Transient Phenomena,” Tech.
Rep. No. 55, Res. Lab. of Electronics, Mass. Inst. Tech., Cambridge,
Mass. Of six parts, no. 2a, “An Elementary Introduction to the

Theory of the Saddlepoint Method of Integration,” has been pub-
lished; May 3, 1950.

In this paper, an elementary theory is formulated
for connecting some known physical interpretations of
Fourier transform pairs in different branches of the
theory of waves and circuitry. This way of putting
things may be considered a little unusual. Ordinarily,
a specific problem is stated and the mathematical tools
for solving it are looked for. Here, the tool, Fourier
transformation, is given, and the connection between
some known problems that can be solved by means of
Fourier transforms is studied.

So many papers have been published on the use of
Fourier transforms in engineering and physics that the
author is compelled to refer only to certain specific
papers in the different fields.

THE FOURIER TRANSFORMATION

As is well known,? a Fourier series expansion may be
written in the exponential form

{f(v) = Y a,ei?™wId  where (1)
a/2

ap = — [f(p)e=i@mneld)dy, (2)
L d J_ap

By means of a limiting process, this series expansion
can be transformed to an integral

50 = [ [ [ srermay |ereean. @)
Separating:

60 = [ s @

|16 = [ Faermen ®)

The function F(u) is called the Fourier transform of
f@); fw) is called the inverse Fourier transform of
F(u). Together they form a Fourier pair. This Fourier
pair, (4) and (5) has been tabulated; the most extensive
table is the one by Campbell and Foster.?

3 G. A. Campbell and R. M. Foster, “The practical application of
the Fourier integral,” Bell Syst. Tech. J., vol. 7, pp. 639~707; October,
1928.

Campbell and Foster, “Fourier Integrals for Practical Applica-
tions,” Bell Syst. Tech. J., Monograph B584; September, 1931, and
D. Van Nostrand Co., Inc., New York, N. Y., 1948.
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When f(v) and F(u) are discontinuous, (4) and (5)
have to be written as Fourier-Stieltjes integrals:

F = [ ey ©
0 = [ ermwaca) "
where
(0 = [ fodo ®)
6w = [ r@a, ©)

The functions g(¥) and G(u) are called distribution
functions; f(e) and F(B) are called density distribution
functions.

Very often the function F(u) is “normalized”:

[ :ﬂv)e—ﬂmdv

[ :f(v)dv

When the first derivatives of f(v) or F(u) are discon-
tinuous, the so-called first corner theorem, stated by
Cerrillo in a rigorous mathematical form,* has to be
used. When, for simplicity, in the following we mainly
treat continuous functions satisfying (4) and (5), it is
understood that a small change of this Fourier pair
makes it rigorously applicable as well to discontinuous
functions and impulse functions.

_ F
F(u)norm = F(u)u=0 =

(10)

DirrrAcTION OF WAVES

Let us assume that we have a finite aperture in the
interval —(d/2) <x<(d/2), and that the aperture is
excited by a wave, see Fig. 1, so that all elements of the
aperture are in phase and have a density distribution
function f(x). We now select a point P in the so-called
Fraunhofer region; <.e., at such a distance from the
origin that rays from the aperture towards P may be
considered to be parallel. Adding the contributions of
all element waves from the aperture at P we get

d/2
f(x)eﬂwkx sin ﬁdx
~d/2

Fy(6, k) = (11)

where Fi(#, &) equals F(8, k) multiplied by a phase fac-
tor determined by P’s exact position, € is the angle be-
tween the rays and a line perpendicular to the x axis,
and the wave number 2=1/A\.

Putting

—ksin @ =

(12)

4« M. V. Cerrillo and E. F. Bolinder, “On Basic Existence The-
orems in Network Synthesis, Part 1V: Transmission of Pulses,”
Tech. Rep. No. 246, Res. Lab. of Electronics, M.I.T., Cambridge,
Mass.; August, 1952.
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Fig. 1—Diffraction of a wave.

we get

df2
flax)e2mvady,

—d/2

Fi(u) = (13)
This is a Fourier integral, because f(x) =0, |x| > (d/2).
The inverse Fourier transform is

flz) = wal(u)ef““du. (14)

o
We now have two cases to consider:
1) % is a constant,  is a variable.

This case, known by Michelson in 1905, has been
extensively treated in literature. A critical examination
of the conditions under which it is right to consider
Fi(u) to be an antenna polar diagram was lately made
by Booker and Clemmow.? They introduced a powerful
concept called angular spectrum.

The integrals (13) and (14) can easily be extended to
two or three dimensions, and have proved to be of great
value in works dealing with diffraction of X rays and
electrons by crystals. They have also been used, for
example, in optics, in antenna theory, and in acoustics.
The first to suggest the use of Fourler series in crystal
analysis problems is thought to be W. H. Bragg in 1915.
Since then, many papers have been published in that
field; an article by Patterson® and a monograph by
Wrinch? may be mentioned as examples.

During the second world war, Ramsay created an
antenna theory® by interpreting the theorems in the
Campbell-Foster table, mentioned above, in terms of
antenna theory. At the same time Booker and his group

8 H. G. Booker and P. C. Clemmow, “The concept of an angular
spectrum of plane waves, and its relation to that of polar diagram
and aperture distribution,” Proc. IEE, part 111, pp. 11-17; January,
195f‘).A. L. Patterson, “The diffraction of X-rays by small crystalline
particles,” Phys. Rev., vol. 56, pp. 972-977; November, 1939.

7 D. Wrinch, “Fourier transforms and structure factors,” Axsred
Monograph no. 2, The American Society of X-ray and Electron
Diffraction, Murray Printing Co., Cambridge, Mass.; February,
194?.]. F. Ramsay, “Fourier transforms in the aerial theory,” six

parts in the Marconi Rev., 1946-1948, based on two reports written
in 1942-1943.
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used Fourier transforms for determining cosec § antenna
patterns. On the basis of analogies in optics, Spencer?
independently constructed an equivalent antenna
theory. A book on the applications of Fourier integrals
in optics has been published by Duffieux.!

Ir acoustics the Fourier pair, (13) and (14), has
been used in designing microphones and loudspeakers.!t

Both in electromagnetic theory and in acoustics, it
is common to extend this Fourier pair to two dimen-
sions and, after that, to make a transformation to polar
coordinates. In that way, a Fourier-Bessel transform
pair originates. For this pair the author has not been
able to find any extensive table corresponding to the
Campbell-Foster tables.

2) # is a constant==—90 degrees, % is a variable.

In this case we get

f' d/2

}F(k) = f(x)e= 27 kady (15)
—d/2

if(x) = j;:F(k)eﬂmdk (16)

and the point P is located as shown in Fig. 2.

REFLECTION OF WAVES

In the diffraction case, Fig. 2, the wave exciting the
aperture may be thought of as having its wavefront
parallel to the x axis. If, instead, we assume that the
wave is coming in toward the interval —(d/2)<x
<(d/2) in the positive x direction (Fig. 3) and is partly
reflected in the interval, we get the following integral
for the reflection coefficient at P:

a/2
pi(k) = f Px)yei2mh2ady (17)

—dj2

where P(x) is the variable reflection coefficient in the
interval. Since there are no reflections for |x| > (d/2),
the limits may be replaced by — « and « in the same
way as in the diffraction case. The Fourier transform
originating has the following mate:

P(x) =f o1(k)emk2od k.

—00

(18)

Since the wave travels back and forth, distance x in the
diffraction case is now replaced by distance 2x.
Practically, the simplest way of realizing this situa-
tion is by means of a dispersion-free coaxial tapered line.
See Fig. 4. It can easily be shown that the connection

s R. C. Spencer, “Fourier Integral Methods of Pattern Analysis,”
Rad. Lab. Rep. 762-1, M.I.T., Cambridge Mass.; PB 15305; Janu-
ary, 1946.

10 P M. Duffieux, “L’intégrale de Fourier et ses applications &
l'optique,” Société Anonyme des Imprimeries Oberthur, Rennes,
France; 1946.

u H, F. Olsen, “Elements of Acoustical Engineering,” D. Van
Nostrand Co., Inc. New York. N.Y.; 1940.

Bolinder: Applications of Fourier Transforms in Wave Theory

155
A f{x)
P e x
X —-ldx‘._ ‘
d d
-7 A 2
wave
Fig. 2—Diffraction of a wave, § = —90°.
P{x)
;WGVT?/ ﬂ \— wave
PTeflecied] wave L x dx ta— L
d a
-5 5

Fig. 3—Reflections in an inhomogeneous medium.

\

}
N

d
2

Fig. 4—Coaxial tapered line.

between the variable reflection coefficient P(x), and the
variable characteristic impedance, Zo(x), is the follow-
ing:?

1 dan()(x)

Ple) = 2 dx

(19)
Some restrictions have to be imposed on the reflection
coefficients so that the Fourier integrals will be valid
with great accuracy. These restrictions are that, in order
to retain a plane field in the line, both P(x) and pi(k)
have to be small compared to unity.

2 E. F. Bolinder, “Fourier transforms in the theory of inhomo-
geneous transmission lines,” Trans. Royal Inst. Tech. (Stockholm,
Sweden), no. 48; 1951. Also see Proc. IRE, vol. 38, p. 1354; Novem-
ber, 1950.
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CoUupPLING OF WAVES

By exchanging the concept of reflection for that of
coupling in the preceding section, we obtain an ap-
proximate theory of, for instance, the directional cou-
pler.® The Fourier transform pair is directly

( d/2

Ieo(R) = I(x)eT2mhlogy (20)

—d/2

1) = [ LBereioei 1)

where I(x) is the coupled wave at a distance x, and
I.ev 15 the total reversed wave in the coupled transmis-
sion line.

In the tapered line case the incident wave and the
reflected element waves were enclosed in the same trans-
mission line. In the coupling case the incident wave and
the reflected waves travel in different transmission lines.
See Fig. 5. Independent of the above theory, Miller, at
the Bell Telephone Laboratories, recognized the Fourier
transform formulation of the directivity of directional
couplers. The work was presented in a joint paper with
Mumford at the IRE Convention in 1951.%
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Fig. 5—Coupling of waves.

The directional couplers, both continuous and dis-
crete, are well suited for frequencies in the microwave
and vhf regions. For lower frequencies, it is possible
to use a discrete folded directional coupler. See Fig. 6.
Replacing the pieces of transmission lines between the
coupling holes by delay networks and the couplings by
amplifying devices, a distributed amplifier is obtained.

At low frequencies it is possible to use the upper half
of the configuration in Fig. 6 and match it at the re-
ceiving end. See Fig. 7. The former coupling points are
connected to phase-shifting attenuating or amplifying
devices. Because of the low frequency, the tapping
points 1%, Ty, + - -, T, may be connected together to
a common output P. The type of filter originating was
thoroughly investigated by Kallmann,'® who called it a

1B E, F. Bolinder, “Approximate theory of the directional cou-
pler ” Proc. IRE, vol. 39, p. 291; March, 1951.

% S 'E. Miller and W. W. Mumford “Multi-element directional
couplers,” presented before the IRE N ational Convention, New York,
N. Y.; March, 1951.

5 H. E. Kallmann,
pp. 302-310; July, 1940.

“Transversal filters,” Proc. IRE, vol. 28,
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Fig. 7—Transversal filter.

“transversal” type of filter, to distinguish it from the
ordinary “longitudinal” type of filter. The transversal
filter has many features analogous to the grating spec-
troscope. Similar systems were described in patents
filed in 1931 by Wiener and Lee.’® By replacing the
pleces of transmission lines in Fig. 7 by delay networks,
Stutt!” constructed a delay-line network with which
transient phenomena, Fourier transforms, convolution
integrals, and so on, can be studied on a cathode-ray
tube.

At still lower frequencies the concept of distance com-
pletely loses its significance. By putting x=ct, 2=f/c,
where ¢ is the velocity of light, we obtain the well-
known Fourier pair in time-frequency domains:

= [ s (2)

Lf ) = f_ :F (Ne*=Iudf. (23)

REFRACTION AND POLARIZATION OF WAVES

For the sake of completeness, it would have been
nice if the concept of reflection given above could also
be exchanged for the concepts of refraction or polariza-
tion. However, as shown by Fig. 8, in these cases no
interference is obtained between element waves in the
same sense as in the other cases, so that no Fourier
transform pairs similar to the ones above are obtained.

DEFLECTION OF PARTICLES: THE SCANNING
ProBLEM

In the different cases above, we have assumed that
the point P is fixed, and that the waves move and are
added at P. We may, however, just as well assume that
we have a fixed field varying sinusoidally with time
in the interval —(d/2)<x<(d/2), and that P con-

% N. Wiener and Y. W. Lee, “Electrical network system,” U.S.
Patent No. 2024900; December 17, 1935 (filed September 2, 1931).

17 C. A. Stutt, “E\perlmental Study of Optimum Filters, » Tech.
Rep. No. 182, Res. Lab. of Electronics, M.I.T., Cambrldge Mass.;
May, 1951.
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stitutes a particle moving through the interval. The
field may be transversal or longitudinal and the particle
may be of different kinds. During its travel through the
field, the particle is exposed to influences from the field,
and the influences are summed up after the particle has
passed through the interval.

Because the particle P always travels with a velocity
less than that of light, we have to introduce a fictitious
wavelength A\.=1/k., if we want to use the same for-
mulas as those given above. If v is the velocity of the
particle P, and ¢ is the velocity of light,

¢
ke = —F. (24)
v
The Fourier transform pair is
aje
Fi(k,) = flx)ye 2mkendy (25)
—d/2
flx) = f Fy(k e bedl,. (26)
]
f(x)
/—\WW
/
/ 7. wave P
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Fig. 8—A wave through a refracting or polarizing medium.

The Cathode-Ray-Tube Case

If the particle P constitutes an electron, and the
density distribution function f(x) is an electric field
transverse to the x axis (formed, for instance, by metal-
lic plates according to Fig. 9), then the cathode-ray-
tube case is obtained. It has been shown!® that in this
case Fi(k.) is the dynamic sensitivity factor of the cath-
ode-ray tube. Theoretically, the case may be thought of
as originating from the reflection case by exchanging
the concept of reflection for that of angular deflection.
The corresponding approximations are that, both the
variable angular deflection of the electron beam, f(x)
=¢(x), and the total deflection angle at the end of the
deflection, Fi(k.) =¢q(k.), must be small.

The Gep (Slit) Effect

If an electron P, instead of passing through a trans-
verse electric field, passes through a parallel field (see,
for example, Fig. 10), the instantaneous velocity of P
will be changed. If we assume that the velocity change

18 E. F. Bolinder, “A theory of determining the dynamic sensi-
tivity of cathode-ray-tubes at very high frequencies by means of
Fourier transforms,” IRE Traxs., vol. ED-2, pp. 44-50; January,
1955.
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Fig. 10—An electron in a longitudinal field.

is small, so that the total transit time through the field
can be assumed to be constant, then Fi(k,) constitutes
the so-called beam coupling factor obtained, for in-
stance, in klystron theory. An analogous transit time
factor is obtained in transistor theory. The coining of
the expression “gap effect” for these factors perhaps is
still better understood in cases in which P constitutes a
particle of a band running in front of a gap having a
fixed field distribution. Examples are magnetic tape re-
cording!® and reproduction of movie film.203 In all
of the examples given above, the gap factor, which for a
parallel slit of width d follows the well-known expression

sin wk.d

Falke) = rk.d

(27)

may be changed, inside certain limits, by changing the
field distribution in the slit.

THE SCANNING PROBLEM

If, instead of a moving point P and a fixed aperture,
we have a fixed point P and a moving aperture, the
conditions of the scanning problem are fulfilled. Two
fundamental papers dealing with the scanning problem
in two dimensions have been written by Mertz and
Gray?? and Wheeler and Loughren.® Both papers are

18 F, Krones, “Die Magnetische Schallaufzeichnung in Theorie
und Praxis,” special edition of Radiotechnik, Z. fir Hoclfrequens.
Verlag B Erb, Wien, 1952.

20 W, Meyer-Eppler, “Toufilmspalt und filmfrequenzgang,” Kino-
Technik, part I, pp. 1~7; January, 1943; part 11, pp. 16-18; February,
1943.

2 W, Meyer-Eppler, “Verzerrungen, die durch die endliche durch-
lassbreite physikalischer apparate hervorgerufen werden, nebst
Anwendung auf die Periodenforschung,” Ann. Phys., vol. 41, pp.
261--300; April, 1942,

2 P, Mertz and F. Gray, “A theory of scanning and its relation
to the characteristics of the transmitted signal in telephotography
and television,” Bell Syst. Tech. J., vol. 13, pp. 464-513; July, 1934.

23 H. A. Wheeler and A. V. Loughren, “The fine structure of tele-
vision images,” Proc. IRE, vol. 26, pp. 540-575; May, 1938.
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concentrated on the scanning problem in television, but
the latter paper stresses the analogous conditions in
optics.

The step from the slit problem in optics to optical
diffraction of an aperture is very small. Thus we may
say that we have returned to our starting point.

Fourier Pairs iN TimMe AND FREQUENCY DOMAINS

In our modern world of pulse-modulated links, tele-
vision sets, and radars, the Fourier pair in time and
frequency domains, (22) and (23), known since the days
of Fourier and Lord Rayleigh, has had extensive use.
The author confines himself to pointing out two papers
by Cherry* and Levy.®

This Fourier pair lately obtained special application
in the theory of superregeneration.®=2°, In this theory

) = s(i) = exp f (28)

where s(f) represents the variation in impulse sensitivity
with time and is, therefore, called “sensitivity pulse,”
a=G/2C, G is the conductance, and C is the capacitance
of a single tuned circuit.

Wheeler,2® in 1942, recognized that the frequency
function representing the selectivity of a simple super-
regenerative circuit is the Fourier transform of the
sensitivity pulse.

RAaNDOM FuNcTIONS

The different Fourier transform pairs discussed above
can be extended to be valid for random functions. The
well-known Wiener-Khintchine theorem states that the

% E, C. Cherry, “Pulse response: a new approach to ac electric
network theory and measurement,” J. IEE, vol. 92, part III, pp.
183-196; September, 1945.

% M. M. Levy, “Fourier series and Fourier transform analysis,”
J. Brit. IRE, part I, vol. 6, pp. 64-73; March-May, 1946; part
II, xol 0, Pp. 228~746 December 1946.

% H. A. Wheeler, “A simple theory and design formulas for super-
regenerative receivers 7 Wheeler Monographs No. 3; June, 1948,

27 H, A. Wheeler, “Superselectivity in a superregenerative re-
ceiver,” Wheeler Monograph No. 7; November, 1948.

28 W, E. Bradley, “Superregenerative detection theory,” Electron-
ics, vol. 21, pp. 96-98; September, 1948.

2 A, Hazeltine, D. Richman, and B. D. Loughlin, “Superregenera-
tne des1gn ? Electromcs, vol. 21 pp. 99-102; September, 1948.

H. A. Wheeler, private correspondence
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power density spectrum and the correlation function
are Fourier transforms of each other. Correlation func-
tions have found applications, for example, in X-ray
crystallography (Patterson diagrams), optics, antenna
theory, acoustics, communication theory, and statistics.
Much work has been done and is still going on, to figure
out the exact interrelations among these different fields.
A complete treatment of the random functions cases
with references is, however, outside the scope of this
paper.

ConNcLusION

The different physical applications of Fourier trans-
form pairs discussed above show a selection of the great
variety of problems which can be treated by one and
the same mathematical tool, Fourier transformation
theory. Thus, results in one field are immediately ap-
plicable in another field. Computations are simplified
by existing tables and calculating machines. In the
cases in which severe assumptions limit the practical
use of the theory, the Fourier transform pairs have to
be modified. Even in these idealized cases, however, the
Fourier theory is of great value because it is simple and
comprehensible. The presentation above constitutes an
attempt to show, in a graphic way, how some known
Fourier transform pair applications may be thought of
as fitting together.
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