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The Relationship of Physical Applications of Fourier

Transforms in Various Fields of Wave

Theory and Circuitry*
E. FOLKE BOLINDER~

Summa ry-A procedure is presented for connecting some known

physical applications of Fourier transform pairs in cliff erent branches

of the theory of waves and circuitry. After an investigation of the

cases of diffraction, reflection, and coupling of waves, deflection
of particles (which includes the cathode-ray-tube case and so-called
gap effect) and the closely related scanning problem are examined.
Finally, extension to random functions is discussed briefly.

INTRODUCTION

D

URING the last decades, more and more engi-

n eers and physicists have started to use the

Laplace and Fourier transformations in solving

their prcblems. The idea is that a problem that is diffi-

cult to solve in one domain might be easily solved after

transformation to another domain, whereupon a trans-

formation is made back into the original domain. Ac-

tually, every engineer is performing the same type of

operations in multiplying two numbers by adding their

logarithms on his sliderule.

In this paper, only the Fourier transformation arising

from integration along the real axis in the two domains

will be considered. The connection between this trans-

formaticm, the Fourier transformation in the complex

plane, the two-sided and the one-sided Laplace trans-

formations has been lucidly described by van der Pol

and Bremmer.1 The method of extending real integrals

into the complex plane is well known from the residue

calculus. When even the complex integral is difficult to

calculate, approximate integration has to be used.

Until about eight years ago only two methods were

known, both giving asymptotic series as results. The

methods are called the saddlepoint method and the

stationary phase method, Since that time, Cerrillo at

M. 1.T. has created a new theory of approximate inte-

gration founded on five new methods, all giving uni-

formly convergent series2 as results.

* Manuscript received by the PGMTT, October 5, 1956. Reprint-
ed from Ada Po~ytechnica, Physics, including Nucleonics Series, vol.
3, p. 189, 1956. The work was made possible by research grants from
the Swec[ish Gov. Tech. Res. Council, Stockholm, Sweden, and
Telefonaktiebolaqet LM Ericsson, Stockholm, Sw~den.

f Formerly with the Royal Inst. of Tech., DIV. of R:dio Eng.,
Stockholm, Sweden; now at the Res. Lab. of E1ectromcs, Mass.
Inst. of Tech., Cambridge, Mass.

1 B. van der Pol and H. Bremmer, “Operational Calculus Based
on the Two-sided Laplace Integral, ” Cambridge University Press,
London, Eng.; 1950.

2 M. V. Cerrillo, ‘(On the Evaluation of Integrals of the Type

j(Tl, 7-,, . . . , ~J = +. j’ F(s)e~(8,’1,’2,””’,’n)~~

and the Mechanism of Formation of Transient Phenomena, ” Tech.
Rep. No. 55, Res. Lab. of Electronics, Mass. Inst. Tech., ~ambridge,
Mass. 0! six parts, no. 2a, ‘An Elementary Introduction to the
Theory of the Saddlepoint Method of Integration,” has been pub-
lished; May 3, 1950.

In this paper, an elementary theory is formulated

for connecting some known physical interpretations of

Fourier transform pairs in different branches of the

theory of waves and circuitry. This way of putting

things may be considered a little unusuall. Ordinarily,

a specific problem is stated and the mathematical tools

for solving it are looked for. Here, the tool, Fourier

transformation, is given, and the connection between

some known problems that can be solved by means of

Fourier transforms is studied.

So many papers have been published on the use of

Fourier transforms in engineering and physics that the

author is compelled to refer only to certain specific

papers in the different fields.

THE FOURIER TRANSFORMATION

As is well known, 1 a Fourier series expansion may be

written in the exponential form

By means of a limiting process, this series expansion

can be transformed to an integral

f(”) = f “[ f “ f(y)e-~’-dy 1~i2ruvdu. (3)
—m -m

Separating:

The function F(u) is called the Fourier transform of

f(v); ~(zs) is called the inverse Fourier transform of

F(u). Together they form a Fourier pair. This Fourier

pair, (4) and (5) has been tabulated; the most extensive

table is the one by Campbell and Foster.3

s G. A. Campbell and R. M. Foster, “The practical application of
the Fourier integral, ” Bell Syst. Tech. 1., vol. 7, pp. 639-707; October,
1928.

Campbell and Foster, “Fourier Integrals for Practical Applica-
tions, ” Bell Syst. Tech. J., Monograph B.584; September, 1931, and
D. Van Nostrand Co., Inc., New York, N. Y., 1948.
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When ~(v) and F(u) are discontinuous, (4) and (5)

have to be written as Fourier-Stieltjes integrals:

[

s.F(u) = Cf’%ig(v) (6)
—m

f(v) = f%wx(u) (7)
—.

where

g(v) =
s

‘ j(ct)da (8)
—m

G(u) =
s

‘F(/3)d/3. (9)
—.

The functions g(rJ) and G(zL) are called distribution

functions; j(a) and F(/?) are called density distribution

functions.

Very often the function ~(u) is “normalized”:

S

.

j(v) e-i-dv
F(u) -m

F(u).o,n, = —
F(u)W=O –

(lo)

s*j(v)dv
—cc

When the first derivatives of j(v) or F(u) are discon-

tinuous, the so-called first corner theorem, stated by

Cerrillo in a rigorous mathematical form,’ has to be

used. When, for simplicity, in the following we mainly

treat continuous functions satisfying (4) and (5), it is

understood that a small change of this Fourier pair

makes it rigorously applicable as well to discontinuous

functions and impulse functions.

DIFFRACTION 017 WAVES

Let us assume that we have a finite aperture in the

interval — (d/2) < x < (d/2), and that the aperture is

excited by a wave, see Fig. 1, SC)that all elements of the

aperture are in phase and have a density distribution

function j(x). We now select a point P in the so-called

Fra.unhofer region; i.e., at such a distance from the

origin that rays from the aperture towards P may be

considered to be parallel. Adding the contributions of

all element waves from the aperture at P we get

s

d/2

F,(O, k) = f(%.ei2zk@ sin Odx (11)
–df2

where FI(19, k) equals F(O, k) multiplied by a phase fac-

tor determined by P’s exact position, 0 k the angle be-
tween the rays and a line perpendicular to the x axk,
ancl the wave number k = I/A.

Putting

–ksin O==u (12]

~ M. V. Cerrillo and E. F. Bolinder, “On Basic Existence The-
orems in Network Synthesis, Part IV: Transmission of Pulses, ”
Tech. Rep. No. 246, Res. Lab. of Electronics, M.1 .T., Cambridge,
Mass.; August, 1952.
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Fig. l—Diffraction of a wave.

we get

p d/2

F(U) = J ~(z)e-’rdx. (13)
– dl’

This is a Fourier integral, because ~(x)= O, ] x\ > (d/2).

The inverse Fourier transform is

j(z) = ~ ‘F,(u) e~m’U’du. (14)
—cc

We now have two cases to consider:

1) k is a constant, O is a variable.

This case, known by Michelson in 1905, has been

extensively treated in literature. A critical examination

of the conditions under which it is right to consider

Fl(u) to be an antenna polar diagram was lately made

by Booker and Clemmow.5 They introduced a powerful

concept called angular spectrum.

The integrals (13) and (14) can easily be extended to

two or three dimensions, and have proved to be of great

value in works dealing with diffraction of X rays and

electrons by crystals. They have also been used, for

example, in optics, in antenna theory, and in acoustics.

The first to suggest the use of Fourier series in crystal

analysis problems is thought to be W. H. Bragg in 1915.

Since then, many papers have been published in that

field; an article by Patterson6 and a monograph by

Wrinch7 may be mentioned as examples.

During the second world war, Ramsay created an

antenna theorys by interpreting the theorems in the

Campbell-Foster table, mentioned above, in terms of

antenna theory. At the same time Booker and his group

s H. G. Booker and P. C. Clemmow! ‘iThe concept of an angular
spectrum of plane waves, and its relatlon to that of polar diagram
and aperture distribution,” P?oc. IEE, part 111, pp. 11-17; January,
1950.—.

e A. L. Patterson, “The diffraction of X-rays by small crystalline
particles,” Phys. Rev., vol. 56, pp. 972-977; November, 1939.

7 D. Wrinch, “Fourier transforms and structure factors,” Axsred
Monograph no. 2, The American Society of X-ray and Electron
Diffraction, Murray Printing Co., Cambriclge, Mass.; February,
1946.

S J. F. Ramsay, “Fonrier transforms in the aerial theory, ” six
parts in the Ma~coni Rev., 1946–1948, based on two reports written
in 1942–1943.
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used Fourier transforms for determining cosec 19antenna

patterns. On the basis of analogies in optics, Spencer9

independently constructed an equivalent antenna

theory. A book on the applications of l“ourier integrals

in optics has been published by Duffieux.1°

In acoustics the Fourier pair, (13) and (14), has

been used in designing microphones and loudspeakers.11

Both in electromagnetic theory and in acoustics, it

is common to extend this Fourier pair to two dimen-

sions and, after that, to make a transformation to polar

coordinates. In that way, a Fourier-Bessel transform

pair originates. For this pair the author has not been

able to find any extensive table corresponding to the

Campbell-Foster tables.

2) 6 is a constant= – 90 degrees, k is a variable.

In this case we get

(

s

d/2

F(k) = f(x)e-?2.?c.~z (15)
–dfz

If\j(x) = ‘F(k) ef’%ik (16)
—CC

;and the point P is located as shown k Fig. 2.

REFLECTION OF M7AVES

1 n the diffraction case, Fig. 2, the wave exciting the

aperture may be thought of as having its wavefrout

parallel to the x axis. If, instead, we assume that the

Ivave is coming in toward the interval — (d/2) <x

< (d/2) in the positive x direction (Fig. 3) and is partly

reflected in the interval, we get the following integral

for the reflection coefficient at P:

s

d/2

Pi(k) =
p(x)e–j!.kzz~$ (17)

–d/2

where P(x) is the variable reflection coefficient in the

interval. Since there are no reflections for ] x \ > (d/2),

the limits may be replaced by — ~ and LX in the same

~vay as in the diffraction case. The Fourier transform

originating has the following nlate:

J
m

P(x) = ~l(k)efz~~~.~dk (18)
—.

Since the wave travels back and forth, distance x in the

diffraction case is now replaced by distance 2x.

Practically, the simplest way of realizing this situa-

tion is by means of a dispersion-free coaxial tapered line.

See Fig. 4. It can easily be shown that the connection

a R. C. Spencer, “Fourier Integral klcthods of Pattern Analysis, ”
Rad. Lab. Rep. 762-1, NI.I.T., Cambridge Mass.; PB 15305; Janu-
ary, 1946.

10 P. M. Duffieux, “L’int6grale de Fourier et ses applications 2
l’o~jticl~le,” Soci6t4 Anouyme des Imprimeries Oberthur, Rennes,
France; 1946.

II H. F. Olsen, “Elements of Acoustical Engineering, ” D. Van
Nostrand Co., Inc. New York. N. Y.; 1940.
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Fig. 2—Diffraction of a wave, 0 = –90°.
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Fig. 3—Reflections in an inhomogeueous medium.
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Fig. 4—Coaxial tapered line.

between the variable reflection coefficient P(x), and the

variable characteristic impedance, ZO(X), is the follow-

iug:lz

1 d lnZO(x)
P($) = j ~z “ (19)

Some restrictions have to be imposed on the reflection

coefficients so that the Fourier integrals will be valid

with great accuracy. These restrictions are that, in order

to retain a plane field in the line, both f’(x) and p,(k)

have to be small compared to unity.

12 E. F. 1301inder, “Fourier transforms in the theory of inhonlo-
geneous transmission lines, ” T~am. Royal Ire-t. Tech. (Stockholm,
Sweden), no. 48; 1951. Also see PROC. IRE, vol. 38, p. 1354; Novem-
ber, 1950.
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COUPLING OF WAVES

By exchanging the concept of reflection for that of

coupling in the preceding section, we obtain an ap-

proximate theory of, for instance, the directional cou-
Plera 13The Fourier transform pair iS directly

f sd12

I

I,a.(k) = ~(%)e–i27rk2m& (20)
–d/2

s

w
I(x) = Irev(k)e~2~%Zk (21)

—w

where 1(x) is the coupled wave at a distance x, and

1,.. is the total reversed wave in the coupled transmis-

sion line.

In the tapered line case the incident wave and the

reflected element waves were enclosed in the same trans-
mission line. In the coupling case the incident wave and

the reflected waves travel in different transmission lines.

See Fig. 5. Independent of the above theory, Miller, at

the Bell Telephone Laboratories, recognized the Fourier

transform formulation of the directivity of directional

couplers. The work was presented in a joint paper with

Mumford at the IRE Convention in 1951.14

I
I I (x:

incident wave /’ \ _ transmission lane I

reflected wavei 1*’

1-
transmiss[on line II

vx+dx t..-

I
Fig. 5—Coupling of waves.

The directional couplers, both continuous and dis-

crete, are well suited for frequencies in the microwave

and vhf regions. For lower frequencies, it is possible

to use a discrete folded directional coupler. See Fig. 6.

Replacing the pieces of transmission lines between the

coupling holes by delay networks and the couplings by

amplifying devices, a distributed amplifier is obtained.

At low frequencies it is possible to use the upper half

of the configuration in Fig. 6 and match it at the re-
ceiving end. See Fig. 7. The former coupling points are

connected to phase-shifting attenuating or amplifying

devices. Because of the low frequency, the tapping

points Tl, Tz, . . . , T. may be connected together to

a common output P. The type of filter originating was

thoroughly investigated by Kallmann, 15who called it a

13E. F. Bolinder, “Approximate theory of the directional cou-
pier, ” PROC. IRE, vol. 39, p. 291; March, 1951.

14S. E. Miller and W. W. Mumford+, ‘{Multi-element directional
couplers, ” presented before the IRE National Convention, New York,
N. Y.; March, 1951.

1sH. E. Kallmann, “Transversal filters, ” PROC. IRE, vol. 28,
pp. 302–310; Ju1y, 1940.

Fig. GA folded directional coupler.
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TI T2 T3 T4 75

i

Fig. 7—Transversal filter.

“transversal” type of filter, to distinguish it from the

ordinary “longitudinal” type of filter. The transversal

filter has many features analogous to the grating spec-

troscope. Similar systems were described in patents

filed in 1931 by Wiener and Lee. 1° By replacing the

pieces of transmission lines in Fig. 7 by delay networks,

Stutt17 constructed a delay-line network with which

transient phenomena, Fourier transforms, convolution

integrals, and so on, can be studied on a cathode-ray

tube.

At still lower frequencies the concept of distance com-

pletely loses its significance. By putting x= et, k =f/c,

where c is the velocity of light, we obtain the well-

known Fourier pair in time-frequency domains:

r mm

p
F(j) = j(t)e-iz~f tdt (22)

—.

REFRACTION AND POLARIZATION OF WAVES

For the sake of completeness, it would have been

nice if the concept of reflection given above could also

be exchanged for the concepts of refraction or polariza-

tion. However, as shown by Fig. 8, in these cases no

interference is obtained between element waves in the

same sense as in the other cases, so that no Fourier

transform pairs similar to the ones above are obtained.

DEFLECTION OF PARTICLES: THE SCANNING
PROBLEM

In the different cases above, we have assumed that

the point P is fixed, and that the waves move and are

added at P. We may, however, just as well assume that

we have a fixed field varying sinusoidally with time

in the interval — (d/2) <x< (d/2), and that P cOn-

M N. ~~iener and Y. W. Lee, “Electrical network system, ” U.S.
Patent No. 2024900; December 17, 1935 (filed September 2, 1931).

IT C, A. Stutt “Experimental Study of Optimum Filters, ” Tech.
Rep. No. 182, R&. Lab. of Electronics, M. I. T., Cambridge, Mass.;
May, 1951.
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stitutes a particle moving through the interval. The

field may be transversal or longitudinal and the particle

may be of different kinds. During its travel through the

field, the particle is exposed to influences from the field,

and the influences are summed up after the particle has

passed through the interval.

Because the particle P always travels with a velocity

less than that of light, we have to introduce a fictitious

wavelength h,= 1/kc, if we want to use the same for-

m ulas as those given above. If u is the velocity of the

particle P, and c is the velocity of light,

ke=:k. (24)
v

The Fourier transform pair is

[

sdi?

F,(k,) = j(x)e-’’wl?%?% (25)
–d12

j(z) = j_’mFJkJe$2”’@dk,. (26)
—w

If(x)

r wave P—
w \-— —

:
0 x

x_— dx ~
2 $

Fig. 8—A wave through a refracting or polarizing medium.

Tke Catkode-Ray-Tube Case

If the particle P constitutes an electron, and the

density distribution function ~(x) is an electric field

transverse to the x axis (formed, for instance, by metal-

lic plates according to Fig. 9), then the cathode-ray-

tube case is obtained. It has been shownls that in this

case F1 (kc) is the dynamic sensitivity factor of the cath-

ode-ray tube. Theoretically, the case may be thought of

as originating from the reflection case by exchanging

the concept of reflection for that of angular deflection.

The cc,rresponding approximations are that, both the

variable angular deflection of the electron beam, ~(x)

=@(x),, and the total deflection angle at the end of the

deflection, .FI(ke) =&(k,), must be small.

The (%p (slit)Effect

If an electron P, instead of passing through a trans-

verse electric field, passes through a parallel field (see,

for example, Fig. 10), the instantaneous velocity of P

will be changed. If we assume that the velocity change

IS E. F. Bolinder, ‘(A theory of determining the dynamic 5en5i-

tivity of cathode-ray-tubes at very high frequencies by means of
~~::ier transforms, ” IRE TRANS., vol. ED-2, pp. 44-50; January,
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Fig. 9—An electron in a transversal field.
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I
Fig. 10—An electron in a longitudinal field.

is small, so that the total transit time through the field

can be assumed to be constant, then Fl(k.) constitutes

the so-called beam coupling factor obtained, for in-

stance, in klystron theory. An analogous transit time

factor is obtained in transistor theory. The coining of

the expression “gap effect” for these factors perha]ps is

still better understood in cases in which -P constitutes a

particle of a band running in front of a gap having a

fixed field distribution. Examples are magnetic tape re-

cordinglg and reproduction of movie film.zo’zl In. all

of the examples given above, the gap factor, which for a

parallel slit of width d follows the well-known expression

sin rk ed
F,(kJ =

rk,d
(27)

may be changed, inside certain limits, by changing the

field distribution in the slit.

THE SCANNING PROBLEM

If, instead of a moving point P and a fixed aperture,

we have a fixed point P and a moving aperture, tire

conditions of the scanning problem are fulfilled. Two

fundamental papers dealing with the scanning problem

in two dimensions have been written by Mertz and

Gray22 and Wheeler and Lou.ghren.23 Both papers are

19 F. Kroues, “Die Magnetische Schallaufzeichnung in Theorie
und Praxis, ” special edition of Radiotechnik, Z. j’iir Hockfreguerra
Verlag B Erb, Wien, 1952.

ZOw, MeYer.Eppler, ‘{Tonfilmspalt und fdmfrequenzgan.g,” K~nO-

Techtiik, part I, pp. 1-7; January, 1943; part II, pp. 16–18; February,
ICMZ. ..-.

.z, w. ~leyer_EppIer, ~~verzerrungen, die durch die endliche durCh-

lassbreite physikalischer. apparate hervorgerufen werden, nebst
Anwendung auf die Periodenforschung,” Ann. I’hys., vol. 4:1, PP.
261–300; April, 1942.

zzp. Mertz and F. Gray, “A theory of scanning and its relation

to the characteristics of the transmitted signal in telephotography
and television, ” Bell .Syst. Tech. Y., vol. 13, pp. 464-515; July, 1934.

23H. A. ~\7heeler and A. v. Loughren, “The fine structure of tele-

vision images, ” PROC. IRE, vol. 26, pp. 540-575; May, 1938.
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concentrated on the scanning problem in television, but

the latter paper stresses the analogous conditions in

optics.

The step from the slit problem in optics to optical

diffraction of an aperture is very small. Thus we may

say that we have returned to our starting point.

FOURIER PAIRS IN TIME AND FREQUENCY DOMAINS

In our modern world of pulse-modulated links, tele-

vision sets, and radars, the Fourier pair in time and

frequency domains, (22) and (23), known since the days

of Fourier and Lord Rayleigh, has had extensive use.

The author confines himself to poiating out two papers

by Cherry94 and Levy.~5

This Fourier pair lately obtained special application

in the theory of superregeneration.26 -2g. In this theory

stj(t)=s(t)=exp cd, (28)
o

where s(t) represents the variation in impulse sensitivity

with time and is, therefore, called “sensitivity pulse,’7

a = G/2C, G is the conductance, and C is the capacitance

of a single tuned circuit.

Wheeler,80 in 1942, recognized that the frequency

function representing the selectivity of a simple super-

regenerative circuit is the Fourier transform of the

sensitivity pulse.

RANDOM FUNCTIONS

The different Fourier transform pairs discussed above

can be extended to be valid for random functions. The

well-known Wiener-Khintchine theorem states that the

2AE. C. Cherry, “Pulse response: a new approach to ac electric
network theory and measurement, ” J. IEE, vol. 92, part III, pp.
183-196; September, 1945.

~EM. M. Levy, “Fourier series and Fourier transform analysis, ”
J. Brit. IRE, part I, vol. 6, pp. 64-73; March-May, 1946; part
II, vol. 6, pp. 228–246; December, 1946.

% H. A. WheeIer, ‘(A simple theory and design formulas for super-

regenerative receivers, ” Wheeler Monographs No. 3; June, 19+8.
z? H. A. Wheeler, “Superselectivity in a superregenerative re-

ceiver, ” Wheeler Monograph No. 7; Novembe:, 1948.
28 w, E. BradleY ‘iSuperregenerative detection theory, ” Electnm-

ics, vol. 21, pp. 96-48; September, 1948.
‘g A. Hazeltine, D. Richman, and B. D. Loughlin, ‘(Superregenera-

tive design, ” Electronics, vol. 21, pp. 99–102; September, 1948.
so H. A. Wheeler, pri~-ate correspondence.

power density spectrum and the correlation function

are Fourier transforms of each other. Correlation func-

tions have found applications, for example, in X-ray

crystallography y (Patterson diagrams), optics, antenna

theory, acoustics, communication theory, and statistics.

Much work has been done and is still going on, to figure

out the exact interrelations among these different fields.

A complete treatment of the random functions cases

with references is, however, outside the scope of this

paper.

CONCLUSION

The different physical applications of Fourier trans-

form pairs discussed above show a selection of the great

variety of problems which can be treated by one and

the same mathematical tool, Fourier transformation

theory. Thus, results in one field are immediately ap-

plicable in another field. Computations are simplified

by existing tables and calculating machines. In the

cases in which severe assumptions limit the practical

use of the theory, the Fourier transform pairs have to

be modified. Even in these idealized cases, however, the

Fourier theory is of great value because it is simple and

comprehensible. The presentation above constitutes an

attempt to show, in a graphic way, how some known

Fourier transform pair applications may be thought of

as fitting together.
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